Sarsa

Sarsa

Sarsa 决策

1720667078392

  • 学习完成后,根据当前状态在Q值表中的最大Q值来选取动作

Sarsa更新

1720667162152

  • 更新Q值表:通过计算现实Q值和估计Q值的差距来更新
  • 现实Q值:估算的动作也是接下来要做的动作(on-policy)
  • 估计Q值:原Q值表中对应的Q值

Sarsa整体算法

1720667162152

  • 不同之处:Sarsa是说到做到型,所以称为on-policy,在线学习,学着自己在做的事情。而Q-learning 是说到但并不一定做到,所以称为Off-policy,离线学习。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
"""
This part of code is the Q learning brain, which is a brain of the agent.
All decisions are made in here.

View more on my tutorial page: https://morvanzhou.github.io/tutorials/
"""

import numpy as np
import pandas as pd


class RL(object):
def __init__(self, action_space, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
self.actions = action_space # a list
self.lr = learning_rate
self.gamma = reward_decay
self.epsilon = e_greedy

self.q_table = pd.DataFrame(columns=self.actions, dtype=np.float64)

def check_state_exist(self, state):
if state not in self.q_table.index:
# append new state to q table
self.q_table = self.q_table.append(
pd.Series(
[0]*len(self.actions),
index=self.q_table.columns,
name=state,
)
)

def choose_action(self, observation):
self.check_state_exist(observation)
# action selection
if np.random.rand() < self.epsilon:
# choose best action
state_action = self.q_table.loc[observation, :]
# some actions may have the same value, randomly choose on in these actions
action = np.random.choice(state_action[state_action == np.max(state_action)].index)
else:
# choose random action
action = np.random.choice(self.actions)
return action

def learn(self, *args):
pass


# off-policy
class QLearningTable(RL):
def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
super(QLearningTable, self).__init__(actions, learning_rate, reward_decay, e_greedy)

def learn(self, s, a, r, s_):
self.check_state_exist(s_)
q_predict = self.q_table.loc[s, a]
if s_ != 'terminal':
q_target = r + self.gamma * self.q_table.loc[s_, :].max() # next state is not terminal
else:
q_target = r # next state is terminal
self.q_table.loc[s, a] += self.lr * (q_target - q_predict) # update


# on-policy
class SarsaTable(RL):

def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
super(SarsaTable, self).__init__(actions, learning_rate, reward_decay, e_greedy)

def learn(self, s, a, r, s_, a_):
self.check_state_exist(s_)
q_predict = self.q_table.loc[s, a]
if s_ != 'terminal':
q_target = r + self.gamma * self.q_table.loc[s_, a_] # next state is not terminal
else:
q_target = r # next state is terminal
self.q_table.loc[s, a] += self.lr * (q_target - q_predict) # update

Sarsa(λ)

单步更新 and 回合更新

1720667162152

λ取值

1720667162152

  • λ=0, 就变成了Sarsa的单步更新, 当λ=1, 就变成了回合更新, 对所有步更新的力度都是一样。 当λ=(0,1)之间, 取值越大, 离宝藏越近的步更新力度越大。

Sarsa(λ)整体算法

sl4

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
"""
This part of code is the Q learning brain, which is a brain of the agent.
All decisions are made in here.

View more on my tutorial page: https://morvanzhou.github.io/tutorials/
"""

import numpy as np
import pandas as pd


class RL(object):
def __init__(self, action_space, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
self.actions = action_space # a list
self.lr = learning_rate
self.gamma = reward_decay
self.epsilon = e_greedy

self.q_table = pd.DataFrame(columns=self.actions, dtype=np.float64)

def check_state_exist(self, state):
if state not in self.q_table.index:
# append new state to q table
self.q_table = self.q_table.append(
pd.Series(
[0]*len(self.actions),
index=self.q_table.columns,
name=state,
)
)

def choose_action(self, observation):
self.check_state_exist(observation)
# action selection
if np.random.rand() < self.epsilon:
# choose best action
state_action = self.q_table.loc[observation, :]
# some actions may have the same value, randomly choose on in these actions
action = np.random.choice(state_action[state_action == np.max(state_action)].index)
else:
# choose random action
action = np.random.choice(self.actions)
return action

def learn(self, *args):
pass


# backward eligibility traces
class SarsaLambdaTable(RL):
def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9, trace_decay=0.9):
super(SarsaLambdaTable, self).__init__(actions, learning_rate, reward_decay, e_greedy)

# backward view, eligibility trace.
self.lambda_ = trace_decay
self.eligibility_trace = self.q_table.copy()

def check_state_exist(self, state):
if state not in self.q_table.index:
# append new state to q table
to_be_append = pd.Series(
[0] * len(self.actions),
index=self.q_table.columns,
name=state,
)
self.q_table = self.q_table.append(to_be_append)

# also update eligibility trace
self.eligibility_trace = self.eligibility_trace.append(to_be_append)

def learn(self, s, a, r, s_, a_):
self.check_state_exist(s_)
q_predict = self.q_table.loc[s, a]
if s_ != 'terminal':
q_target = r + self.gamma * self.q_table.loc[s_, a_] # next state is not terminal
else:
q_target = r # next state is terminal
error = q_target - q_predict

# increase trace amount for visited state-action pair

# Method 1:
# self.eligibility_trace.loc[s, a] += 1

# Method 2:
self.eligibility_trace.loc[s, :] *= 0
self.eligibility_trace.loc[s, a] = 1

# Q update
self.q_table += self.lr * error * self.eligibility_trace

# decay eligibility trace after update
self.eligibility_trace *= self.gamma*self.lambda_

Sarsa
https://ustc-lizheng.github.io/2024/07/12/rl/2-Sarsa/
作者
高山临溪谷
发布于
2024年7月12日
许可协议