1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
| """ This part of code is the Q learning brain, which is a brain of the agent. All decisions are made in here.
View more on my tutorial page: https://morvanzhou.github.io/tutorials/
Pytorch: https://github.com/ClownW/Reinforcement-learning-with-PyTorch Tensorflow: https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow """
import numpy as np import tensorflow as tf
np.random.seed(1) tf.set_random_seed(1)
class DeepQNetwork: def __init__( self, n_actions, n_features, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9, replace_target_iter=300, memory_size=500, batch_size=32, e_greedy_increment=None, output_graph=False, ): self.n_actions = n_actions self.n_features = n_features self.lr = learning_rate self.gamma = reward_decay self.epsilon_max = e_greedy self.replace_target_iter = replace_target_iter self.memory_size = memory_size self.batch_size = batch_size self.epsilon_increment = e_greedy_increment self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max
self.learn_step_counter = 0
self.memory = np.zeros((self.memory_size, n_features * 2 + 2))
self._build_net()
t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='target_net') e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='eval_net')
with tf.variable_scope('hard_replacement'): self.target_replace_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)]
self.sess = tf.Session()
if output_graph: tf.summary.FileWriter("logs/", self.sess.graph)
self.sess.run(tf.global_variables_initializer()) self.cost_his = []
def _build_net(self): self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s') self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_') self.r = tf.placeholder(tf.float32, [None, ], name='r') self.a = tf.placeholder(tf.int32, [None, ], name='a')
w_initializer, b_initializer = tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1)
with tf.variable_scope('eval_net'): e1 = tf.layers.dense(self.s, 20, tf.nn.relu, kernel_initializer=w_initializer, bias_initializer=b_initializer, name='e1') self.q_eval = tf.layers.dense(e1, self.n_actions, kernel_initializer=w_initializer, bias_initializer=b_initializer, name='q')
with tf.variable_scope('target_net'): t1 = tf.layers.dense(self.s_, 20, tf.nn.relu, kernel_initializer=w_initializer, bias_initializer=b_initializer, name='t1') self.q_next = tf.layers.dense(t1, self.n_actions, kernel_initializer=w_initializer, bias_initializer=b_initializer, name='t2')
with tf.variable_scope('q_target'): q_target = self.r + self.gamma * tf.reduce_max(self.q_next, axis=1, name='Qmax_s_') self.q_target = tf.stop_gradient(q_target) with tf.variable_scope('q_eval'): a_indices = tf.stack([tf.range(tf.shape(self.a)[0], dtype=tf.int32), self.a], axis=1) self.q_eval_wrt_a = tf.gather_nd(params=self.q_eval, indices=a_indices) with tf.variable_scope('loss'): self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, self.q_eval_wrt_a, name='TD_error')) with tf.variable_scope('train'): self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)
def store_transition(self, s, a, r, s_): if not hasattr(self, 'memory_counter'): self.memory_counter = 0 transition = np.hstack((s, [a, r], s_)) index = self.memory_counter % self.memory_size self.memory[index, :] = transition self.memory_counter += 1
def choose_action(self, observation): observation = observation[np.newaxis, :]
if np.random.uniform() < self.epsilon: actions_value = self.sess.run(self.q_eval, feed_dict={self.s: observation}) action = np.argmax(actions_value) else: action = np.random.randint(0, self.n_actions) return action
def learn(self): if self.learn_step_counter % self.replace_target_iter == 0: self.sess.run(self.target_replace_op) print('\ntarget_params_replaced\n')
if self.memory_counter > self.memory_size: sample_index = np.random.choice(self.memory_size, size=self.batch_size) else: sample_index = np.random.choice(self.memory_counter, size=self.batch_size) batch_memory = self.memory[sample_index, :]
_, cost = self.sess.run( [self._train_op, self.loss], feed_dict={ self.s: batch_memory[:, :self.n_features], self.a: batch_memory[:, self.n_features], self.r: batch_memory[:, self.n_features + 1], self.s_: batch_memory[:, -self.n_features:], })
self.cost_his.append(cost)
self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max self.learn_step_counter += 1
def plot_cost(self): import matplotlib.pyplot as plt plt.plot(np.arange(len(self.cost_his)), self.cost_his) plt.ylabel('Cost') plt.xlabel('training steps') plt.show()
if __name__ == '__main__': DQN = DeepQNetwork(3,4, output_graph=True)
|